Texture Memory-Augmented Deep Patch-Based Image Inpainting

Overall framework

Abstract

Patch-based methods and deep networks have been employed to tackle image inpainting problem, with their own strengths and weaknesses. Patch-based methods are capable of restoring a missing region with high-quality texture through searching nearest neighbor patches from the unmasked regions. However, these methods bring problematic contents when recovering large missing regions. Deep networks, on the other hand, show promising results in completing large regions. Nonetheless, the results often lack faithful and sharp details that resemble the surrounding area. By bringing together the best of both paradigms, we propose a new deep inpainting framework where texture generation is guided by a texture memory of patch samples extracted from unmasked regions. The framework has a novel design that allows texture memory retrieval to be trained end-to-end with the deep inpainting network. In addition, we introduce a patch distribution loss to encourage high-quality patch synthesis. The proposed method shows superior performance both qualitatively and quantitatively on three challenging image benchmarks, i.e., Places, CelebA-HQ, and Paris Street-View datasets.

Publication
In IEEE Transactions on Image Processing (TIP) 2021
Jiaqi Wang 王佳琦
Jiaqi Wang 王佳琦
Research Scientist
Shanghai AI Laboratory

Jiaqi Wang is a Research Scientist at Shanghai AI Laboratory. His research interests focus on Multimodal Learning, Visual Perception, and AI Content Creation in both 2D and 3D open worlds.