UPop: Unified and Progressive Pruning for Compressing Vision-Language Transformers

Overall framework

Abstract

Real-world data contains a vast amount of multimodal information, among which vision and language are the two most representative modalities. Moreover, increasingly heavier models, e.g., Transformers, have attracted the attention of researchers to model compression. However, how to compress multimodal models, especially visonlanguage Transformers, is still under-explored. This paper proposes the Unified and Progressive Pruning (UPop) as a universal vison-language Transformer compression framework, which incorporates 1) unifiedly searching multimodal subnets in a continuous optimization space from the original model, which enables automatic assignment of pruning ratios among compressible modalities and structures; 2) progressively searching and retraining the subnet, which maintains convergence between the search and retrain to attain higher compression ratios. Experiments on various tasks, datasets, and model architectures demonstrate the effectiveness and versatility of the proposed UPop framework.

Publication
In International Conference on Machine Learning (ICML) 2023
Jiaqi Wang 王佳琦
Jiaqi Wang 王佳琦
Research Scientist
Shanghai AI Laboratory

Jiaqi Wang is a Research Scientist at Shanghai AI Laboratory. His research interests focus on Multimodal Learning, Visual Perception, and AI Content Creation in both 2D and 3D open worlds.

Related